6th Tidal and Water Level Working Group Meeting

Australian Hydrographic Service Wollongong 25 – 28 March 2014

Compare Tidal Predictions generated as a result of analysis of a common data set by different analysis software

Chris Jones United Kingdom Hydrographic Office

THE UNITED KINGDOM HYDROGRAPHIC OFFICE

St. Malo tidal data and analysis – brief overview

- SHOM kindly supplied 5- and 10-minute height tidal observations for the French port of St Malo.
- We looked at 15 individual years of data
- 15 separate analyses undertaken
- UKHO analysis procedure requires 378 days for a full "year" analysis.

Year Number	Year	Analysis Start	Analysis End
1	1998	04/05/1998	16/05/1999
2	1999	13/05/1999	24/05/2000
3	2000	20/05/2000	01/06/2001
4	2001	29/05/2001	10/06/2002
5	2002	06/06/2002	18/06/2003
6	2003	14/06/2003	25/06/2004
7	2004	21/06/2004	03/07/2005
8	2006	30/06/2005	12/07/2006
9	2007	08/07/2006	20/07/2007
10	2008	17/07/2007	28/07/2008
11	2009	24/07/2008	05/08/2009
12	2010	01/08/2009	13/08/2010
13	2011	09/08/2010	21/08/2011
14	2012	18/08/2011	29/08/2012
15	2013	25/08/2012	06/09/2013

Methodology

- Raw data quality controlled for spikes / gaps / other issues
- No major problems existed with this dataset.
- Obtain the hourly heights and convert to an input file in the required format

THE UNITED KINGDOM HYDROGRAPHIC OFFICE

Hourly Heights

001 10 1	0200	0281 0 3	364 0421	0431 04	401 0343 (0272 0194	0133 0121 0169	
ddd yy 1=am								
2=pm	0000(hrs) 0100 0 2	200 0300	0400.05	500 0600 (0700 0800	0900 1000 1100 etc	с.
001102	0240 032	25 0412 (0481 049	9 0 4 7 0 0	409 0329	0232 0145	0093 0101	
002101	0158 02	26 0315	0400 045	67 0465 0	427 0371	0289 020	5 0143 0135	
002102	0193 02	64 0356	0444 050)5 0519 0	484 0424	0334 023	5 0148 0096	
003101	0105 01	63 0240	0328 041	4 0459 0	458 0417	0358 027	0 0191 0133	
003102	0125 01	82 0253	0349 043	36 0491 0	506 0468	0405 031	4 0220 0140	
004101	0095 01	20 0184	0259 034	8 0430 0	472 0463	0418 034	3 0258 0179	
004102	0115 01	12 0169	0243 033	30 0414 0	472 0480	0442 037	5 0294 0206	
005101	0130 00	93 0126	0189 026	65 0351 0	427 0464	0449 039	9 0333 0247	
005102	0166 01	12 0118	0172 024	0 0319 0	398 0449	0450 0412	2 0351 0276	
006101	0193 01	23 0098	0134 019	0265 0	351 0419	0449 0433	1 0385 0324	
006102	0241 01	67 0115	0130 017	73 0237 0	313 0388	0431 042	9 0394 0339	
007101	0270 01	94 0133	0113 01 4	9 0201 0	275 0353	0412 043	9 0422 0382	
007102	0318 02	38 0170	0127 012	9 0168 0	222 0293	0356 039	8 0402 0372	

Procedure

- Analysis uses a "grouping method" of 30-day periods as a number of different series.
- Series "1a" uses the first 30 days of data
- Series "2a" looks at the last 15 days used in Series "1a" and the next 15 days
- Series "3a" uses the last 15 days of Series "2a" and the next 15 days, and so on.
- The data is therefore analysed in 30 day chunks of 24 analyses over a total period of 378 days.
- Monitor the consistency of the four major constituents, M₂, S₂, K₁ and O₁ and A₀)
- Ensure that there are no major discrepancies in phase angle or amplitude as the analysis progresses.

2009											
2000											
Analysis				M ₂		S ₂		<i>K</i> ₁		01	
	Series No.	Series name	Ao	g	н	g	н	g	н	g	н
	1	1a	6.815	177.1	3.666	227.5	1.504	085.1	0.107	344.4	0.093
	2	2a	6.806	178.0	3.679	226.1	1.467	091.8	0.106	341.0	0.086
	3	За	6.786	178.4	3.643	227.3	1.491	097.2	0.111	337.4	0.105
	4	1b	6.744	178.7	3.708	227.0	1.461	109.1	0.114	337.1	0.098
	5	2b	6.768	178.7	3.678	227.4	1.428	105.5	0.114	344.8	0.080
	6	3b	6.758	178.0	3.717	225.9	1.418	106.2	0.107	338.5	0.089
	7	1c	6.793	177.8	3.635	225.2	1.411	103.6	0.086	350.9	0.078
	8	2c	6.827	176.2	3.680	226.2	1.402	100.9	0.070	342.9	0.091
	9	3c	6.817	176.5	3.614	225.8	1.382	087.8	0.095	336.2	0.078
	10	1d	6.648	176.4	3.675	228.1	1.403	100.7	0.074	344.0	0.083
	11	2d	6.681	176.3	3.602	228.1	1.442	103.9	0.103	329.2	0.071
	12	3d	6.843	176.7	3.660	228.2	1.472	107.0	0.105	003.5	0.066
	13	1e	6.782	176.6	3.657	228.0	1.485	098.9	0.089	344.2	0.095
	14	2e	6.689	178.1	3.711	227.0	1.485	089.6	0.076	331.2	0.073
	15	3e	6.638	178.1	3.684	227.6	1.488	079.7	0.085	347.6	0.089
	16	1f	6.612	178.5	3.737	227.0	1.453	081.7	0.067	340.0	0.090
	17	2f	6.712	177.6	3.715	226.8	1.468	068.7	0.110	343.8	0.079
	18	3f	6.696	177.4	3.739	225.8	1.446	085.9	0.097	338.7	0.083
	19	1g	6.727	176.7	3.727	228.6	1.444	084.9	0.102	338.8	0.072
	20	2g	6.709	176.1	3.720	228.0	1.402	092.5	0.085	337.2	0.060
	21	3g	6.736	175.7	3.725	231.6	1.438	083.1	0.100	340.7	0.074
	22	1h	6.770	175.9	3.718	227.9	1.473	086.6	0.110	353.2	0.082
	23	2h	6.809	176.0	3.734	229.5	1.492	089.1	0.102	353.7	0.077
	24	3h	6.783	177.0	3.697	226.3	1.521	089.9	0.119	348.3	0.079

THE UNITED KINGDOM HYDROGRAPHIC OFFICE

Variation in A₀ (Monthly Means in Sea Level)

Variation in Phase Angle (M₂)

Variation in Amplitude (M₂)

Vectored Results

- Final results are the vector mean of the individual 'years' analysis
- For St. Malo a total of 141 constituents were identified in the analysis
- 24 had amplitudes < 1mm
- Therefore 117 constituents were used in the prediction of tides at St Malo.

Predicted vs Observed Comparison

Average difference of the residuals between the Observed and Predicted tides was 0.019m.

